Basic Tree Pruning Information for Homeowners
Pruning Young Trees

Proper pruning is essential in developing a tree with a strong structure and desirable form. Trees that receive the appropriate pruning measures while they are young will require little corrective pruning when they mature.

There are a few simple principles that everybody should understand before they set out to prune a tree.

- **Each cut has the potential to change the growth of the tree.** Always have a purpose in mind before a cut is made.
- **Proper technique is essential.** Poor pruning can cause damage that lasts for the life of the tree. Learn where and how to make the cuts before picking up the pruning shears.
- **Trees do not heal the way people do.** When a tree is wounded it must grow over and compartmentalize the wound. As a result, the wound is contained within the tree forever.
- **Small cuts do less damage to the tree than large cuts.** This is why proper pruning (training) of young trees is critical. Waiting to prune a tree when it is mature can create the need for large cuts that the tree cannot easily close.

**Making the Cut**

Where you make a pruning cut is critical to a tree's response in growth and wound closure. Pruning cuts should be made just outside the branch collar. Since the branch collar contains trunk or parent branch tissues, the tree will be damaged unnecessarily if you remove or damage it. In fact, if the cut is large, the tree may suffer permanent internal decay from an improper pruning cut.

If a permanent branch is to be shortened, cut it back to a lateral branch or bud. Internodal cuts, or cuts made between buds or branches, may lead to stem decay, sprout production, and misdirected growth.

**Pruning Tools**

When pruning trees, it is important to have the right tool for the job. For small trees, most of the cuts can be made with hand pruning shears. The scissor types, or by-pass blade hand pruners, are preferred over the anvil type. They make cleaner, more accurate cuts. Cuts larger than 1/2 inch in diameter should be made with lopping shears or a pruning saw.

Never use hedge shears to prune a tree. Whatever tool you use, make sure it is kept clean and sharp.
Establishing a Strong Scaffold Structure

A good structure of primary scaffold branches should be established while the tree is young. The scaffold branches provide the framework of the mature tree. Properly trained young trees will develop a strong structure that will require less corrective pruning as they mature.

The goal in training young trees is to establish a strong trunk with sturdy well-spaced branches. The strength of the branch structure depends on the relative sizes of the branches, the branch angles, and the spacing of the limbs. Naturally, this will vary with the growth habit of the tree. Pin oaks and Sweetgum, for example, have a conical shape with a central leader. Elms and live oaks are often wide-spreading without a central leader. Other trees, such as Lindens and Bradford pears, are densely branched. Good pruning techniques remove structurally weak branches while maintaining the natural form of the tree.

Trunk Development

For most young trees, maintain a single dominant leader. Do not prune back the tip of this leader. Do not allow secondary branches to outgrow the leader. Sometimes a tree will develop double leaders known as co-dominant stems. These can lead to structural weaknesses, so it is best to remove one while the tree is young.

The lateral branches contribute to the development of a sturdy well-tapered trunk. It is important to leave some of these lateral branches in place, even though they may be pruned out later. These branches, known as temporary branches, also help protect the trunk from sun and mechanical injury. Temporary branches should be kept short enough not to be an obstruction or compete with selected permanent branches.

Permanent Branch Selection

Nursery trees often have low branches that may make the tree appear well-proportioned when young, but low branches are seldom appropriate for large growing trees in an urban environment. How a young tree is trained depends on its primary function in the landscape. For example, street trees must be pruned so that they allow at least 16 feet of clearance for traffic. Most landscape trees only require about eight feet of clearance.

The height of the lowest permanent branch is determined by the tree’s intended function and location in the landscape. Trees that are used to screen an unsightly view or provide a wind break may be allowed to branch low to the ground. Most large growing trees in the landscape
must eventually be pruned to allow head clearance.

The spacing of branches, both vertically and radially, in the tree is very important. Branches selected as permanent scaffold branches must be well-spaced along the trunk. Maintain radial balance with branches growing outward in each direction.

A good rule of thumb for the vertical spacing of permanent branches is to maintain a distance equal to 3% of the tree’s eventual height. Thus, a tree that will be 50 feet tall should have permanent scaffold branches spaced about 18 inches apart along the trunk. Avoid allowing two scaffold branches to arise one above the other on the same side of the tree.

Some trees have a tendency to develop branches with narrow angles of attachment and tight crotches. As the tree grows, bark can become enclosed deep within the crotch between the branch and the trunk. This is called included bark. Included bark weakens the attachment of the branch to the trunk and can lead to branch failure when the tree matures. You should prune branches with weak attachments while they are young.

Avoid over-thinning the interior of the tree. The leaves of each branch must manufacture enough food to keep that branch alive and growing. In addition, each branch must contribute food to grow and feed the trunk and roots. Removal of too many leaves can starve the tree, reduce growth and make the tree unhealthy. A good rule of thumb is to maintain at least half the foliage on branches arising in the lower 2/3 of the tree.

Newly Planted Trees
Pruning of newly planted trees should be limited to corrective pruning. Remove torn or broken branches, and save other pruning measures for the second or third year.

The belief that trees should be pruned when planted to compensate for root loss is misguided. Trees need their leaves and shoot tips to provide food and the substances which stimulate new root production. Unpruned trees establish faster with a stronger root system than trees pruned at the time of planting.

Wound Dressings
Wound dressings were once thought to accelerate wound closure, protect against insects and diseases, and reduce decay. However, research has shown that dressings do not reduce decay or speed closure and rarely prevent insect or disease infestations. On the contrary, wound dressings can accelerate decay and inhibit wound closure. Avoid the use of any materials for treating wounds – leave them open to the air.
Pruning Mature Trees

Pruning is the most common tree maintenance procedure. Although forest trees grow quite well with only nature's pruning, landscape trees require a higher level of care to maintain their safety and aesthetics. Pruning should be done with an understanding of how the tree responds to each cut. Improper pruning can cause damage that will last for the life of the tree, or worse, shorten the tree's life.

Reasons for Pruning

Since each cut has the potential to change the growth of the tree, no branch should be removed without a reason. Common reasons for pruning are to remove dead branches, to remove crowded or rubbing limbs, and to eliminate hazards. Trees may also be pruned to increase light and air penetration to the inside of the tree's crown or to the landscape below. In most cases, mature trees are pruned as a corrective or preventative measure.

Routine thinning does not necessarily improve the health of a tree. Trees produce a dense crown of leaves to manufacture the sugar used as energy for growth and development. Removal of foliage through pruning can reduce growth and stored energy reserves. Heavy pruning can be a significant health stress for the tree.

Yet if people and trees are to coexist in an urban or suburban environment, then we sometimes have to modify the trees. City environments do not mimic natural forest conditions. Safety is a major concern. Also, we want trees to complement other landscape plantings and lawns. Proper pruning, with an understanding of tree biology, can maintain good tree health and structure while enhancing the aesthetic and economic values of our landscapes.

When to Prune

Most routine pruning to remove weak, diseased, or dead limbs can be accomplished at any time during the year with little effect on the tree. As a rule, growth is maximized and wound closure is fastest if pruning takes place before the spring growth flush. Some trees, such as maples and birches, tend to "bleed" if pruned early in the spring. This may be unsightly, but is of little consequence to the tree.

A few tree diseases, such as oak wilt, can be spread when pruning wounds allow spores access into the tree. Susceptible trees should not be pruned during active transmission periods.

Heavy pruning just after the spring growth flush should be avoided. This is when trees have just expended a great deal of energy to produce foliage and early shoot growth. Removal of a large percentage of foliage at this time can stress the tree.
Making Proper Pruning Cuts

Pruning cuts should be made just outside the branch collar. The branch collar contains trunk or parent branch tissue and should not be damaged or removed. If trunk collar has grown out on a dead limb to be removed, make the cut just beyond the collar. Do not cut the collar.

If a large limb is to be removed, its weight should first be reduced. This is done by making an undercut about 12-18 inches from the limb's point of attachment. A second cut is made from the top, directly above or a few inches further out on the limb. This removes the limb leaving the 12-18 inch stub. The stub is removed by cutting back to the branch collar. This technique reduces the possibility of tearing the bark.

Pruning Techniques

Specific types of pruning may be necessary to maintain a mature tree in a healthy, safe, and attractive condition.

Cleaning:
the removal of dead, dying, diseased, crowded, weakly attached and low-vigor branches from the crown of a tree.

Thinning:
the selective removal of branches to increase light penetration and air movement through the crown. Thinning opens the foliage of a tree, reduces weight on heavy limbs, and helps retain the tree's natural shape.

Raising:
removes the lower branches from a tree in order to provide clearance for buildings, vehicles, pedestrians, and vistas.

Reduction:
reduces the size of a tree, often for clearance for utility lines. Reducing the height or spread of a tree is best accomplished by pruning back the leaders and branch terminals to lateral branches that are large enough to assume the terminal roles (at least 1/3 the diameter of the cut stem). Compared to topping, this helps maintain the form and structural integrity of the tree.
How Much Should Be Pruned?

The amount of live tissue that should be removed depends on the tree size, species, and age, as well as the pruning objectives. Younger trees will tolerate the removal of a higher percentage of living tissue than mature trees. An important principle to remember is that a tree can recover from several small pruning wounds faster than from one large wound.

A common mistake is to remove too much inner foliage and small branches. It is important to maintain an even distribution of foliage along large limbs and in the lower portion of the crown. Over-thinning reduces the tree’s sugar production capacity and can create tip-heavy limbs that are prone to failure.

Mature trees should require little routine pruning. A widely accepted rule of thumb is never to remove more than 1/4 of a tree’s leaf bearing crown. In a mature tree, pruning even that much could have negative effects. Removing even a single, large-diameter limb can create a wound that the tree may not be able to close. The older and larger a tree becomes, the less energy it has in reserve to close wounds and defend against decay or insect attack. The pruning of large mature trees is usually limited to the removal of dead or potentially hazardous limbs.

Wound Dressings

Wound dressings were once thought to accelerate wound closure, protect against insects and diseases, and reduce decay. However, research has shown that dressings do not reduce decay or speed closure and rarely prevent insect or disease infestations. On the contrary, wound dressings can accelerate decay and inhibit wound closure. Avoid the use of any materials for treating wounds – leave them open to the air.

Hire an Arborist

Pruning large trees can be dangerous. If pruning involves working above the ground or using power equipment, it is best to hire a professional arborist. An arborist can determine what type of pruning is necessary to improve the health, appearance, and safety of your trees. A professional arborist can provide the services of a trained crew, with all of the required safety equipment and liability insurance.

There are a variety of things to consider when selecting an arborist:
• Membership in professional organizations such as the International Society of Arboriculture (ISA), the Tree Care Industry Association (TCIA), or the American Society of Consulting Arborists (ASCA).
• Certification through the ISA Certified Arborist program.
- Proof of insurance.
- A list of references (Don't hesitate to check.)
- Avoid using the services of any tree company that:
  - Advertises topping as a service provided. Knowledgeable arborists know that topping is harmful to trees and is not an accepted practice.
  - Uses tree climbing spikes to climb trees that are being pruned. Climbing spikes can damage trees, and their use should be limited to trees that are being removed.
Why Topping Hurts Trees

Topping is perhaps the most harmful tree pruning practice known. Yet, despite more than 25 years of literature and seminars explaining its harmful effects, topping remains a common practice. This brochure explains why topping is not an acceptable pruning technique and offers better alternatives.

What is Topping?

Topping is the indiscriminate cutting of tree branches to stubs or lateral branches that are not large enough to assume the terminal role. Other names for topping include "heading," "tipping," "hat-racking," and "rounding over."

The most common reason given for topping is to reduce the size of a tree. Often homeowners feel that their trees have become too large for their property. People fear that tall trees may pose a hazard. Topping, however, is not a viable method of height reduction and certainly does not reduce the hazard. In fact, topping will make a tree more hazardous in the long term.

Topping Stresses Trees

Topping often removes 50-100% of the leaf-bearing crown of a tree. Since the leaves are the food factories of a tree, this can temporarily starve a tree. The severity of the pruning triggers a sort of survival mechanism. The tree activates latent buds forcing the rapid growth of multiple shoots below each cut. The tree needs to put out a new crop of leaves as soon as possible. If a tree does not have the stored energy reserves to do this, it will be seriously weakened and may die.

A stressed tree is more vulnerable to insect and disease infestations. Large, open pruning wounds expose the sapwood and heartwood to attacks. The tree may lack sufficient energy to chemically defend the wounds against invasion, and some insects are actually to the chemical signals trees release.
The preferred location to make a pruning cut is just beyond the branch collar at the branch's point of attachment. The tree is biologically equipped to close such a wound, provided the tree is healthy enough and the wound is not too large. Cuts made along a limb between lateral branches create stubs with wounds that the tree may not be able to close. The exposed wood tissues begin to decay. Normally, a tree will "wall off" or compartmentalize the decaying tissues, but few trees can defend the multiple severe wounds caused by topping. The decay organisms are given a free path to move down through the branches.

Topping Can Lead to Sunburn

Branches within a tree's crown produce thousands of leaves to absorb sunlight. When the leaves are removed, the remaining branches and trunk are suddenly exposed to high levels of light and heat. The result may be sunburn of the tissues beneath the bark. This can lead to cankers, bark splitting, and death of some branches.

Topping Creates Hazards

The survival mechanism that causes a tree to produce multiple shoots below each topping cut comes at great expense to the tree. These shoots develop from buds near the surface of the old branches. Unlike normal branches that develop in a socket of overlapping wood tissues, these new shoots are anchored only in the outermost layers of the parent branches.

The new shoots grow very quickly, as much as 20 feet in one year, in some species. Unfortunately, the shoots are very prone to breaking, especially during windy conditions. The irony is that while the goal was to reduce the tree's height to make it safer, it has been made more hazardous than before.
Topping Makes Trees Ugly

The natural branching structure of a tree is a biological wonder. Trees form a variety of shapes and growth habits, all with the same goal of presenting their leaves to the sun. Topping removes the ends of the branches, often leaving ugly stubs. Topping destroys the natural form of a tree.

Without the leaves (up to 6 months of the year in temperate climates) a topped tree appears disfigured and mutilated. With the leaves, it is a dense ball of foliage, lacking its simple grace. A tree that has been topped can never fully regain its natural form.

Topping is Expensive

The cost of topping a tree is not limited to what the perpetrator is paid. If the tree survives, it will require pruning again within a few years. It will either need to be reduced again or storm damage will have to be cleaned up. If the tree dies, it will have to be removed.

Topping is a high maintenance pruning practice, and there are some hidden costs of topping. One is the reduction in property value. Healthy, well maintained trees can add 10-20% to the value of a property. Disfigured, topped trees are considered an impending expense.

Another potential cost of topped trees is the potential liability. Topped trees are prone to breaking and can be hazardous. Since topping is considered to be an unacceptable pruning practice, any damage caused by branch failure of a topped tree may lead to a finding of negligence in a court of law.

Alternatives to Topping

There are times when a tree must be reduced in height or spread. Providing clearance for utility lines is an example. There are recommended techniques for doing this. If practical, branches should be removed back to their point of origin. If a branch must be shortened, it should be cut back to a lateral that is large enough to assume the terminal role. A rule of thumb for this is to cut back to a lateral that is at least 1/3 the diameter of the limb being removed.

This method of branch reduction helps to preserve the natural form of the tree. However, if large cuts are involved, the tree may not be able to close over and compartmentalize the wounds. Sometimes the best solution is to remove the tree and replace it with a species that is more appropriate for the site.
Hiring an Arborist

Pruning large trees can be dangerous. If pruning involves working above the ground or using power equipment, it is best to hire a professional arborist. An arborist can determine what type of pruning is necessary to improve the health, appearance, and safety of your trees. A professional arborist can provide the services of a trained crew, with all of the required safety equipment and liability insurance.

There are a variety of things to consider when selecting an arborist:

• Membership in professional organizations such as the International Society of Arboriculture (ISA), the Tree Care Industry Association (TCIA), or the American Society of Consulting Arborists (ASCA).
• Certification through the ISA Certified Arborist program.
• Proof of insurance.
• A list of references (Don't hesitate to check.)
• Avoid using the services of any tree company that:
  - Advertises topping as a service provided. Knowledgeable arborists know that topping is harmful to trees and is not an accepted practice.
  - Uses tree climbing spikes to climb trees that are being pruned. Climbing spikes can damage trees, and their use should be limited to trees that are being removed.

Information provided by the International Society of Arboriculture
Proper method of removing a branch – (3 cut method)
visible collar

remove branch here at edge of collar

no visible collar

imaginary line
branch bark ridge
pruning cut

no collar and included bark

included bark
pruning cut
Removing a dead branch

Dead branch

Do not injure collar

Before pruning

After pruning